19,251 research outputs found

    Raman Scattered He II λ\lambda 6545 Line in the Symbiotic Star V1016 Cygni

    Full text link
    We present a spectrum of the symbiotic star V1016 Cyg observed with the 3.6 m Canada-France-Hawaii Telescope, in order to illustrate a method to measure the covering factor of the neutral scattering region around the giant component with respect to the hot emission region around the white dwarf component. In the spectrum, we find broad wings around Hα\alpha and a broad emission feature around 6545A˚{\rm \AA} that is blended with the [N II]λ \lambda 6548 line. These two features are proposed to be formed by Raman scattering by atomic hydrogen, where the incident radiation is proposed to be UV continuum radiation around Lyβ\beta in the former case and He II λ\lambda 1025 emission line arising from n=6n=2n=6\to n=2 transitions for the latter feature. We remove the Hα\alpha wings by a template Raman scattering wing profile and subtract the [N II] λ\lambda 6548 line using the 3 times stronger [N II] λ\lambda 6583 feature in order to isolate the He II Raman scattered 6545 \AA line. We obtain the flux ratio F6545/F6560=0.24F_{6545}/F_{6560}=0.24 of the He II λ\lambda 6560 emission line and the 6545 \AA feature for V1016 Cyg. Under the assumption that the He II emission from this object is isotropic, this ratio is converted to the ratio Φ6545/Φ1025=0.17\Phi_{6545}/\Phi_{1025}=0.17 of the number of the incident photons and that of the scattered photons. This implies that the scattering region with H I column density NHI1020cm2N_{HI}\ge 10^{20}{\rm cm^{-2}} covers 17 per cent of the emission region. By combining the presumed binary period 100\sim 100 yrs of this system we infer that a significant fraction of the slow stellar wind from the Mira component is ionized and that the scattering region around the Mira extends a few tens of AU, which is closely associated with the mass loss process of the Mira component.Comment: 12 pages, 6 figures, accepted for publication in Ap

    Spectropolarimetry of the borderline Seyfert 1 galaxy ESO 323-G077

    Full text link
    We report the detection of high linear polarization in the bright Seyfert 1 galaxy ESO 323-G077. Based on optical spectropolarimetry with FORS1 at the VLT we find a continuum polarization which ranges from 2.2 % at 8300A to 7.5 % at 3600A. Similar amounts of linear polarization are found for the broad emission lines, while the narrow lines are not polarized. The position angle of the polarization is independent of the wavelength and found to be perpendicular to the orientation of the extended [OIII] emission cone of this galaxy. Within the standard model of Seyfert nuclei the observations can be well understood assuming that this AGN is observed at an inclination angle where the nucleus is partially obscured and seen mainly indirectly in the light scattered by dust clouds within or above the torus and the illuminated inner edge of the dust torus itself. Hence we conclude that ESO 323-G077 is a borderline Seyfert 1 galaxy which can provide important information on the geometric properties of active nuclei

    Toward the Evidence of the Accretion Disk Emission in the Symbiotic Star RR Tel

    Get PDF
    In this paper, we argue that in the symbiotic star RR Tel the existence of an accretion disk around the hot companion is strongly implied by the characteristic features exhibited by the Raman-scattered O VI lines around 6830 \AA and 7088 \AA. High degrees of polarization and double-peaked profiles in the Raman-scattered lines and single-peak profiles for other emission lines are interpreted as line-of-sight effects, where the H I scatterers near the giant see an incident double-peaked profile and an observer with a low inclination sees single-peak profiles. It is predicted that different mass concentrations around the accretion disk formed by a dusty wind may lead to the disparate ratios of the blue peak strength to the red counterpart observed in the 6830 and 7088 features. We discuss the evolutionary links between symbiotic stars and bipolar protoplanetary nebulae and conclude that the Raman scattering processes may play an important role in investigation of the physical properties of these objects.Comment: 11 pages, 3 figures, accepted for publication in the ApJ Letter

    Disorder Induced Stripes in d-Wave Superconductors

    Get PDF
    Stripe phases are observed experimentally in several copper-based high-Tc superconductors near 1/8 hole doping. However, the specific characteristics may vary depending on the degree of dopant disorder and the presence or absence of a low- temperature tetragonal phase. On the basis of a Hartree-Fock decoupling scheme for the t-J model we discuss the diverse behavior of stripe phases. In particular the effect of inhomogeneities is investigated in two distinctly different parameter regimes which are characterized by the strength of the interaction. We observe that small concen- trations of impurities or vortices pin the unidirectional density waves, and dopant disorder is capable to stabilize a stripe phase in parameter regimes where homogeneous phases are typically favored in clean systems. The momentum-space results exhibit universal features for all coexisting density-wave solutions, nearly unchanged even in strongly disordered systems. These coexisting solutions feature generically a full energy gap and a particle-hole asymmetry in the density of states.Comment: 28 pages, 8 figure

    Raman-Scattering Wings of H alpha in Symbiotic Stars

    Full text link
    Nussbaumer et al. (1989) proposed that broad Hα\alpha wings can be formed through Raman scattering of Lyβ\beta photons, and in this Letter we argue that the Hα\alpha wings prevalently seen in symbiotic stars may be indeed formed in this way. Assuming a flat incident UV radiation around Lyβ\beta, we generate template wing profiles around Hα\alpha that are formed through Raman scattering in a plane-parallel H~I region. We perform profile fitting analyses to show that the template wing profiles are in excellent agreement with the observed ones that are provided by van Winckel et al. (1993) and Ivison et al. (1994). The wing flux is determined by the scattering H~I column density and the incident Lyβ\beta flux strength and profile. From our profile analysis it is proposed that the Raman scattering component may be identified with the neutral envelope with a column density ranging 101820cm210^{18-20} {\rm cm^{-2}} that surrounds the binary system. We briefly discuss alternative candidates for the wing formation mechanism and observational implications of Raman scattering in symbiotic stars and in other astronomical objects including planetary nebulae, post AGB stars and active galactic nuclei.Comment: 6 pages including 2 figures, to appear in the Astrophysical Journal Letter

    Chemical ordering and composition fluctuations at the (001) surface of the Fe-Ni Invar alloy

    Full text link
    We report on a study of (001) oriented fcc Fe-Ni alloy surfaces which combines first-principles calculations and low-temperature STM experiments. Density functional theory calculations show that Fe-Ni alloy surfaces are buckled with the Fe atoms slightly shifted outwards and the Ni atoms inwards. This is consistent with the observation that the atoms in the surface layer can be chemically distinguished in the STM image: brighter spots (corrugation maxima with increased apparent height) indicate iron atoms, darker ones nickel atoms. This chemical contrast reveals a c2x2 chemical order (50% Fe) with frequent Fe-rich defects on Invar alloy surface. The calculations also indicate that subsurface composition fluctuations may additionally modulate the apparent height of the surface atoms. The STM images show that this effect is pronounced compared to the surfaces of other disordered alloys, which suggests that some chemical order and corresponding concentration fluctuations exist also in the subsurface layers of Invar alloy. In addition, detailed electronic structure calculations allow us to identify the nature of a distinct peak below the Fermi level observed in the tunneling spectra. This peak corresponds to a surface resonance band which is particularly pronounced in iron-rich surface regions and provides a second type of chemical contrast with less spatial resolution but one that is essentially independent of the subsurface composition.Comment: 7 pages, 5 figure

    Kinetically driven helix formation during the homopolymer collapse process

    Full text link
    Using Langevin simulations, we find that simple 'generic' bead-and-spring homopolymer chains in a sufficiently bad solvent spontaneously develop helical order during the process of collapsing from an initially stretched conformation. The helix formation is initiated by the unstable modes of the straight chain, which drive the system towards a long-lived metastable transient state. The effect is most pronounced if hydrodynamic interactions are screened.Comment: 4 pages, 4 figure

    Detecting Extrasolar Planets with Integral Field Spectroscopy

    Get PDF
    Observations of extrasolar planets using Integral Field Spectroscopy (IFS), if coupled with an extreme Adaptive Optics system and analyzed with a Simultaneous Differential Imaging technique (SDI), are a powerful tool to detect and characterize extrasolar planets directly; they enhance the signal of the planet and, at the same time, reduces the impact of stellar light and consequently important noise sources like speckles. In order to verify the efficiency of such a technique, we developed a simulation code able to test the capabilities of this IFS-SDI technique for different kinds of planets and telescopes, modelling the atmospheric and instrumental noise sources. The first results obtained by the simulations show that many significant extrasolar planet detections are indeed possible using the present 8m-class telescopes within a few hours of exposure time. The procedure adopted to simulate IFS observations is presented here in detail, explaining in particular how we obtain estimates of the speckle noise, Adaptive Optics corrections, specific instrumental features, and how we test the efficiency of the SDI technique to increase the signal-to-noise ratio of the planet detection. The most important results achieved by simulations of various objects, from 1 M_J to brown dwarfs of 30 M_J, for observations with an 8 meter telescope, are then presented and discussed.Comment: 60 pages, 37 figures, accepted in PASP, 4 Tables adde

    Influence of strain on magnetization and magnetoelectric effect in La0.7A0.3MnO3 / PMN-PT(001) (A = Sr; Ca)

    Full text link
    We investigate the influence of a well-defined reversible biaxial strain <=0.12 % on the magnetization (M) of epitaxial ferromagnetic manganite films. M has been recorded depending on temperature, strain and magnetic field in 20 - 50 nm thick films. This is accomplished by reversibly compressing the isotropic in-plane lattice parameter of the rhombohedral piezoelectric 0.72PMN-0.28PT (001) substrates by application of an electric field E <= 12 kV cm-1. The magnitude of the total variable in-plane strain has been derived. Strain-induced shifts of the ferromagnetic Curie temperature (Tc) of up to 19 K were found in La0.7Sr0.3MnO3 (LSMO) and La0.7Ca0.3MnO3 films and are quantitatively analysed for LSMO within a cubic model. The observed large magnetoelectric coupling coefficient alpha=mu0 dM/dE <= 6 10-8 s m-1 at ambient temperature results from the strain-induced M change in the magnetic-film-ferroelectric-substrate system. It corresponds to an enhancement of mu0 DeltaM <= 19 mT upon biaxial compression of 0.1 %. The extraordinary large alpha originates from the combination of three crucial properties: (i) the strong strain dependence of M in the ferromagnetic manganites, (ii) large piezo-strain of the PMN-PT substrates and (iii) effective elastic coupling at the film-substrate interface.Comment: 15 pages, 6 figures, 1 tabl
    corecore